Science Labs in Primary School: Structure and Routine

Process and content knowledge are in the foreground because they are what students do or produce. But, both become possible only when structure and routine are operating in the background.

One of the primary ways teachers can shape the structure of their class is by how they manage it. How you choose to reinforce positive behavior and discipline negative behavior has a substantial effect on learning. There are many ways and approaches to this, but the best fall closely in line with the approach of authoritative parenting. Warm/Strict is a popular application of this method. For more, you can read about it here, here, and here.

Some Principles of Classroom Management

Essentially this means teachers should manage the class…

  • with clear, high expectations (behavioral and academic)
  • with support students to help them achieve expectations
  • with clear, fair rules enforced with fair consequences
  • with an understanding of extenuating circumstances
  • with everything done in genuine warmth towards the students

The bookends to the above list are the most important because when paired, they make the rest possible. High expectations without genuine warmth all too often leads to more authoritarian approaches. And, to say it simply, genuine warmth towards students without high expectations is flat out impossible. This is a false warmth. If you are treating students “warmly” but not demanding students work towards a high bar, you aren’t being kind or caring for them. Instead, you are actively working to reduce their potential.

Structure Puts Principles Action

Principles are not put into actions by pasting posters on the wall or even by telling students the rules and enforcing them. They are only put into action if you model the principles and support students as they strive towards them, providing discipline when needed.

One simple way to put the first three principles in action is with facial expressions and gestures. It may sound strange, but getting a variety of expressions and gestures down will make your life as a teacher better and will make handling disruptions smoother. These small routines provide structure that gives your students the support they need to reach the high expectations we must have.

When a student is off task, catch their eyes and give them the look. When they acknowledge you, nod and move on.
When a student isn’t writing and they should be, catch their eyes and pantomime writing with one hand holding a pen and the other being paper.
Etc.

What is key here is that students understand what the signals mean. If students are guessing the purpose, it will not be effective. Introduce the signals and tell students what they mean. Take guesswork out of the equation. This allows you to redirect students quickly, directly, and subtly.
*Note: These work best for minor disruptions, you will need other tools to deal with more significant problems.

In addition, these signals make transitions easier. Something as simple as a 3, 2, 1 Stop! (slightly increased pitch on the “Stop”) accompanied with a hand countdown makes it very clear to students that they need to finish and look at you. Whatever you choose to use for transitions, be consistent and make sure students know what the signals mean.

These structures are supports. They allow students to put their efforts towards achieving academically because they provide focus. They allow students to reach that high behavior bar you set because they provide clear direction, making it easier for students to stay on task.

Structure in the Lab

We must bring these established structures and routines to the lab with our class. The strategies are versatile enough to survive the new and exciting environment. As you enter the lab, expect for your students to be excited and to need a bit more correcting and time to settle in/transition than normal.

Stick to your already established structures and routines. Your students will adjust. Labs are naturally a bit more chaotic than a normal class. This makes structure and routines all the more important. Settle your students down by using the countdown or some other method. Then give instructions (verbally and written). It will be best if you can pass out a small sheet of paper with the instructions. This gives students a reminder that stays right in front of them.

Make sure all eyes are on you as you model step one. Be explicit about your directions. Say something like, “You have 15 seconds to set up step one, Go!” Then bring attention back to you with whatever already established method you’ve chosen. Once everyone is refocused, go on to the next step, and so on.

Keep a snappy pace. This will keep faster students focused. And students who move more slowly will be able to follow along just fine because they will have your model for each step.

Transitioning into Less-Structured Activities

Follow a similar structure when you are moving from one part of the lab to another. Once the setup is done and the experiment is ready to begin, you will still want to have teacher led transitions. This reduces confusion. 

Chaos is more susceptible when students are making observations or inferences. There is only so much we can do here. I like to preface these activities by briefly reviewing whatever we have learned and having students reread their hypotheses. I find that this helps transition their minds go from setting up the lab to being ready to actually do it. Then I say, “You will have 2 minutes to make observations. You have to talk to your partners, but you must talk like you are in a library. Do you understand?” 

My students are familiar with this routine and know to respond with a whispered, “Yes, we understand.” I often have to repeat this part a second time because they respond at a normal or even excited volume. But, this makes my expectations explicit. There is no guesswork and, as a result, my students work quietly and are focused during observation time. Then I set them loose to make observations or inferences with a hand signal.

Long Term Goals

Remember, we have primary students, they are not experts in the lab. The lab is still relatively new and mysterious to them. The structure is there to help them succeed. As you do more labs, you can gradually give students more freedom. But make sure they can succeed with it. We don’t want free students that drown in freedom. We want them to swim in it. And the best way to do that is for them to internalize the high expectations, structures, and routines you choose to create.

So give your students freedom by ensuring they have the necessary process knowledge and content knowledge for the lab. Give your students freedom by providing structure and routines. When they are ready, let them swim.

Science Labs in Primary School: Content Knowledge

This is part two in a three part series.

Part 1. Science Labs in Primary Schools: Process Knowledge


The Second Key: Content Knowledge

If you want your students to be able to succeed in the lab, they need to know the science. Do not have your students “discover” the main idea or key concepts in the lab. This will work for some students, but not for struggling students. Teaching with this type of discovery in mind widens the achievement gap. Instead, teach your students the key vocabulary words and concepts before the lab. 

Giving Content Knowledge Requires Structure

The best way to give your students knowledge and skills involves a structured approach to teaching (The Third Key). This structure need not create a stiff, cold environment. In fact, if your structure creates this type of environment, I’d argue that your structure is bad and that you need to adjust your approach to classroom management.

Essentially, this means being an authoritative teacher. Or, in the vernacular of Teach Like a Champion, it means being warm/strict. But more on this in post three.

Instruction and Content Knowledge

We must help our students become critical thinkers if we want them to have a chance in the lab, because a lab is essentially applying background knowledge through critical thinking in order to solve a problem. Luckily for us, the research here is relatively clear. Critical thinking happens with what we already know (Willingham, 2007). 

A tried and true method that helps students learn more is the I do, We do, You do model. In this, we essentially do what it says. The teacher explains and demonstrates, then there is some sort of group work, and after several checks for understanding and feedback, students are ready for independent work.

I am partial to the Explicit Instruction model, which is essentially a detailed version of I do, We do, You do. Here is an overview of Explicit Instruction.

Checks for Understanding: No-Stakes Quizzes

One way I like to check for understanding is by giving a few no-stakes quizzes in the week or two leading up to a lab. Click here to see how I go about using no-stakes quizzes. In our checks for understanding, regardless of the format this takes (quiz, groupwork, assignment, etc) we should mix in a  variety of factual recall and transfer (application) questions covering the same content in different contexts.

Factual Recall Examples:

What is a convection current?
What causes a convection current to form?
Why does change in temperature cause convection currents to form?

Transfer (Application) Examples:

Describe how a convection current forms in our atmosphere.
How does a convection current form in the geosphere?
Explain how convection currents affect the ocean.
Why does your soup have convection currents?

This mix of questions helps to make knowledge flexible, meaning that students will be more likely to successfully apply what they have learned both in the lab and in their daily lives. This is the goal right?

Knowledge in the Lab

So, after we have taught in a way to ensure our students know about the content, they are ready to test and apply it in the lab. By having background knowledge, we are changing the type of questions our students will ask and therefore, we are changing their hypotheses.

For example, if we take a more discovery based approach to labs, we may have our students investigate the following question, “What happens when a heater is placed under a glass of water with dye at the bottom?” 

Whereas if we use a more explicit approach, our students will not ask this question, because they will already know what will happen and why it will happen.

Instead, students with greater background knowledge can ask more involved questions such as, “Will a larger temperature difference change the size or speed of the convection current?” “How will obstacles affect convection currents?” and many more.

This type of question is worth spending a lab on. The first question, “What happens when a heater…” is not worth a lab. It is worth a teacher demonstration. 

Help your students think critically, redeem labs by teaching knowledge. Give your students knowledge so that they may apply it.

Science Labs in Primary School: Process Knowledge

Doing a science lab with younger children can be stressful even to think about. I have made the choice to avoid labs before because I couldn’t figure out  a way to do it without wanting to rip my hair out.

But as my own hair is starting to fall out of its own accord, I have learned how to make labs with primary students relatively painless and certainly useful.

As I see it, there are three key parts of a successful lab with any age of students, but these components are even more important for young learners: process knowledge, content knowledge, structure and routine. 

The First Key: Process Knowledge

Students must understand the process of science before they can reasonably perform a lab. This will look a bit different depending on the level you teach. But the overall ideas remain the same. Our students should be familiar with an appropriate version of the scientific method.

By appropriate, I mean that we can adjust it to our students. A seven year old doesn’t necessarily need to memorize every step in the scientific method. But the seven year old should understand the scientific method to be something along the lines of, “I use what I know to make a hypothesis. Then I test it. I write what happens. I test it again and write it down again. Finally I say why my hypothesis was right or wrong.”

Content Light On Purpose

When I am introducing the scientific method, I want my students to focus on the scientific method, not the “science content”. I go about this by doing what I call a “content light” lab. This is on a topic I am certain my students have good knowledge on. This allows them to better focus on following the steps of the scientific method without being distracted by complex procedures the experiment’s outcomes.

For example, I would not teach the scientific method with a chemical reactions lab. Mixing acids and bases is great fun, but it would not lead to a focus on the scientific method. Students would likely be distracted by the complex procedures and or the novelty of the experience.

Content Light Labs

For a content light lab, we take notes on one step of the scientific method and then we immediately apply it in short steps. One of my go to’s for this is a lab on gravity. My students already have background knowledge (Second Key), the testing procedure is simple, and it is fast. All of this works together to allow students to focus on the scientific method.

Example

1a. Define background knowledge: what you already know about a topic
1b. What do you know about gravity? Jot down this info as a class below the definition

2a. Define hypothesis: Using what you know to to explain what you think will happen in a testable and repeatable way
(This takes longer as you have to explain testable and repeatable)
2b. If I drop ‘Object A’ and ‘Object B’ at the same height, then “Object A/B’ will fall to the ground at a faster/slower/same rate.
(Feel free to adjust how you require students to form their hypotheses. But I do recommend always writing them in the same format. This makes it easier for students to focus on the science, not the writing.)

3a. Define procedure: steps to perform the experiment
3b. Grab two objects (not a single piece of paper) and drop them from the same height, then record the results.

4a. Define test: Doing the experiment
4b. Perform the procedure

5a. And so on…

The most challenging part here is step 4b. This is where the lesson is most likely to crash and burn. The way you can avoid this is with the third key, structure and routine. I will write about this more in a future post, but in brief here is my advice.

Have students perform step 4b in unison by following your direction.
Ex: “Ok, grab the two objects you decided to test. Everybody ready? Ok, good. Now hold them up, make sure they are the same height. Now, when I say go, drop them. Ready? 3, 2, 1 Go!”

The Second Key: Content Knowledge
The Third Key: Structure and Routine

Day 1: Messy Labs and Learning

I am an elementary science teacher and I have decided to start a long term science lab with my 5th grade students where we created an aquaponics system. The goal is to give my students a concrete example that we will reference throughout the entire unit (1 month +) so that by the end, students will easily be able to explain how energy is transferred through an ecosystem and how organisms interact within one.

Getting 5th graders to set up an aquaponics system is no small task. It was messy.

I was limited to 6 small aquariums to split among 60 students. I decided that groups of 5 would be best, with each group responsible for ½ of the aquarium. Here is a picture of the finished aquaponics system.

While one group of 5 was prepping their half of the aquarium portion, the other was preparing the growbed for our chia and mung bean seeds.

Things were smooth to this point. But shortly afterwards, it devolved into chaos. The group prepping the growbed was supposed to read through the lesson in the textbook when they finished and then they would transition to preparing their half of the aquarium. However, only the conscientious students did this. Many good students and nearly all of my poorer students did next to no reading and decided to chat and play instead.

I believe the reason for this is twofold. One, the area each group should be working in was not clear. Two, I did not have students create a product with the reading. So many students likely felt that they could just do it later or not at all because they are not producing any work for me to grade.

Now, I believe that my students should do as they are told. They didn’t, and their poor behavior is on them. But at the same time, I am responsible for the structure and content of my lessons. The unclarity that helped lead to poor behavior is on me.

In the future, I will clearly demark the areas for each group. This will remove one uncertainty. Students will know where they should be. I will also make students produce some type of work. By forcing students to make a product, I am giving them a concrete goal, something tangible that can be measured. I will also be guiding my students via the assignment.

I believe that these two, relatively small tweaks to my lesson plan will have outsized outcomes. I will find out if this is true tomorrow, when half the class will make observations while the other half does some research. Today was messy, but groundwork for the lab and learning was laid.